estWin: Online data stream mining of recent frequent itemsets by sliding window method
نویسندگان
چکیده
Knowledge embedded in a data stream is likely to be changed as time goes by. Identifying the recent change of the knowledge quickly can provide valuable information for the analysis of the data stream. However, most mining algorithms over a data stream are not able to extract the recent change of knowledge in a data stream adaptively. This is because the obsolete information of old data elements which may be no longer useful or possibly invalid at present is regarded as being as important as that of recent data elements. This paper proposes a sliding window method that finds recently frequent itemsets over a transactional online data stream adaptively. The size of a sliding window defines the desired life-time of information in a newly generated transaction. Consequently, only recently generated transactions in the range of the window are considered to find the recently frequent itemsets of a data stream.
منابع مشابه
A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is likely to be changed as time goes by. However, most of mining algorithms or frequency approximation algorithms for a data stream do not able to extract the recent change of information in a data stream adaptively. This paper proposes a s...
متن کاملDELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams
Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...
متن کاملConcept Change Aware Dynamic Sliding Window Based Frequent Itemsets Mining Over Data Streams
Considering the continuity of a data stream, the accessed windows information of a data stream may not be useful as a concept change is effected on further data. In order to support frequent item mining over data stream, the interesting recent concept change of a data stream needs to be identified flexibly. Based on this, an algorithm can be able to identify the range of the further window. A m...
متن کاملMining frequent itemsets over data streams using efficient window sliding techniques
Online mining of frequent itemsets over a stream sliding window is one of the most important problems in stream data mining with broad applications. It is also a difficult issue since the streaming data possess some challenging characteristics, such as unknown or unbound size, possibly a very fast arrival rate, inability to backtrack over previously arrived transactions, and a lack of system co...
متن کاملAn Efficient Algorithm for Mining Frequent Itemsets Within Large Windows Over Data Streams
Sliding window is an interesting model for frequent pattern mining over data stream due to handling concept change by considering recent data. In this study, a novel approximate algorithm for frequent itemset mining is proposed which operates in both transactional and time sensitive sliding window model. This algorithm divides the current window into a set of partitions and estimates the suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Information Science
دوره 31 شماره
صفحات -
تاریخ انتشار 2005